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Abstract: - This paper motivates the use of Dynamic Mel-Frequency Cepstral Coefficient (DMFCC) feature 
and combination of DMFCC and MFCC features for robust language and text-independent speaker 
identification. MFCC feature, modeled on the human auditory system has been the widely used feature for 
speaker recognition because of its less vulnerability to noise perturbation and little session variability. But the 
human auditory system also can sensitively perceive the pitch changes in the speech. Therefore adopting the 
algorithm which integrates the change in speaker specific pitch information in designing the Dynamic Mel 
scale filter bank exhibit improved effectiveness in speaker identification. The individual Gaussian component 
of Gaussian Mixture Model (GMM) represents vocal tract configurations that are effective for speaker 
identification. The performance of the speaker identification system is experimentally evaluated with 
microphone speech data base consisting of 120 speakers. The experiments examine the speaker Identification 
Error Rate (IDER) by testing using segments of different lengths and also using text-independent utterances in 
Tamil and English languages. In comparison with the identification error rate of 5.8% obtained with MFCC-
based system and 2.9% with DMFCC system an error rate of 1.2% is obtained when DMFCC feature vectors 
are added with MFCC feature vectors to form the combined feature. Experimental results confirm that GMM is 
efficient for language and text – independent speaker identification. 
 
 
Key-Words: - Speaker Identification, Mel- scale filter bank, Gaussian filters, Mel Frequency Cepstral 
Coefficient, Dynamic Mel Frequency Cepstral Coefficient, Gaussian Mixture Model. 
 
 
1 Introduction 
Speech signal is produced by exciting time varying 
vocal tract system with time varying excitation. 
Speech signal contains information about messages 
to be conveyed, speaker identity and language 
information. The speaker-specific characteristics of 
speech are due to differences in physiological and 
behavioral aspects of the speech production system 
in humans. The main physiological aspect of the 
human speech production system is the vocal tract 
shape [4]. The vocal tract modifies the spectral 
content of an acoustic wave as it passes through it, 
thereby producing speech. The vocal tract 
resonances vary based on the shape of the tract, 
which distinguishes one speaker from another. 
Speaker recognition is divided into two tasks: 
speaker identification and speaker verification. The 
goal of speaker identification is to determine the 
person by his or her voice. There are two types of 
speaker identification systems: Text-dependent, 

Text-independent [2]. In text-dependent, the speaker 
has to utter the same phrase during training and 
testing. In text-independent the phrase during testing 
may be independent of training phrase. 
    The earliest approach to speaker identification is 
to use long-term averages of acoustic features, such 
as spectrum representations [5] or pitch [6], [8]. The 
most frequently used parameters for speaker 
identification are MFCC, Linear Predictive Cepstral 
Coefficients (LPCC), pitch [34], formant frequency 
and bandwidth, Bark-Frequency Cepstral 
Coefficients (BFCC)  and so on. Among these 
features MFCC is considered as an important 
characteristic parameter by researchers of speech 
and speaker recognition, because of the preferable 
simulation of the human hearing system’s 
perception ability. MFCC, LPCC and BFCC 
features are based on the spectral information 
derived from a short time windowed segment of 
speech. They differ mainly in the detail of the power 
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spectrum representation. The formant, LPC and 
LPCC are related to vocal tract, and have good 
speaker identification characteristics with high SNR 
(signal to noise ratio). However, when the SNR is 
low, the differences between the vocal tract 
parameters estimated from noisy speech signal and 
those of the real vocal tract model are big. Thus, 
these characteristic parameters cannot correctly 
reflect speaker's vocal tract features. In the Gaussian 
filters in the filter bank based algorithm of MFCC, 
the number of Gaussian filters in the filter bank and 
the center frequency of each filter are fixed. At the 
same time the dynamic construction of Mel filter 
bank based on the speaker’s pitch frequency, better 
represents the periodicity generated by vocal cords 
vibration and uniquely distinguishes the vocal 
characteristics of different people. Hence the feature 
derived from dynamic construction of Mel filter 
bank, the Dynamic MFCC feature is also considered 
to be equivalently important to MFCC features. 
    There are many modeling methods to model the 
speaker-dependent acoustic features within the 
individual phonetic sounds that comprise the 
utterance [7], [8] & [9]. These approaches can be 
accomplished using explicit or implicit 
segmentation of the speech into phonetic sound 
classes prior to speaker model training or 
recognition.  
    In the Hidden Markov Model (HMM) approach, 
the sequences of feature vectors extracted from 
speech waveforms are assumed to be a Markov 
process and modeled with HMM [10], [11]. The 
applicability of HMM-based automatic speech 
recognition is limited due to one critical issue: data-
driven HMM-trained speech models do not 
generalize well from training to testing conditions. 
Such an inevitable mismatch is generally derived 
from 1) speaker effects, e.g., speech production, 
accent, dialect, and speaking rate differences and 2) 
speaking environment effects, e.g., interfering noise, 
transducers and transmission channel distortions 
[32]. HMM is not advantage over GMM in text-
independent task [1]. 

In Vector Quantization (VQ) approach each 
speaker is represented by a codebook of spectral 
templates representing the phonetic sound clusters 
[14], [15]. However some speaker dependent 
temporal information is neglected in VQ. This 
technique provides good performance on limited 
vocabulary task [16], [17], while it limited its ability 
to model possible variabilities in an unconstrained 
speech.  

The GMM falls into the implicit segmentation 
approach to speaker recognition. It provides a 
probabilistic model of the underlying sounds of a 

person’s voice. The third approach to speaker 
recognition is the use of discriminative Neural 
Networks (NN). Rather than training individual 
models to represent particular speakers, 
discriminative NN’s are trained to model the 
decision function which best discriminates speakers 
within a known set [12], [13]. The power and utility 
of the NN has been demonstrated in several 
applications including speech synthesis and pattern 
recognition [18], [19]. In the NN approach, each 
speaker has personalized NN that is trained to be 
activated only by those speakers’ utterances. The 
testing waveforms are tested by the speakers 
personalized NNs to make speaker identification 
decisions. The major drawback of NN is that the 
complete network is retrained when a new speaker 
is added to the system [23]. 

In this paper GMM is used and evaluated for 
text- independent speaker identification. The 
individual component of GMM represents some 
vocal tract configurations that are speaker dependent 
for identifying the speaker. Gaussian mixture 
density provides smooth approximation to the 
sample distribution of observations obtained from 
utterance of a given speaker. In earlier works, LPCC 
and Reflection Coefficients have been used for 
speaker recognition; however they are affected by 
noise [29]. Recent studies [20] found that filter bank 
features are robust to noise in speech recognition. In 
this paper pitch based Mel-scale filter bank is used 
for speech analysis. In speaker identification a 
representation of the speech signal is obtained using 
digital signal processing techniques which preserve 
the features of the speech signal that are relevant to 
speaker identity. The resulting pattern of the speech 
signal is compared to previously prepared reference 
patterns and subsequent decision is made on the 
identity of the speaker.  

This paper is organized as follows. System 
Model has been given in section 2. Preprocessing 
steps and Feature Extraction is explained in section 
3 and section 4 respectively. Section 5 presents 
Gaussian Mixture Model. The experimental results 
are given in section 6 followed by concluding 
remarks in section 7. 
 
 
2 System Model 
Speech signal for training is preprocessed and 
feature vectors are obtained. Then Expectation 
Maximization (EM) algorithm is applied to feature 
vectors and the parameters of GMM are obtained. 
The test speech signal is preprocessed and with the 
feature vectors a posteriori probability is calculated 
along with training parameters in the parameter 
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database. The speaker with maximum a posteriori 
probability is the identified speaker. The block 
diagram used for speaker identification is given in 
Fig.1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig.1. Speaker Identification system model 

 
 
3 Preprocessing 
Preprocessing of speech signal, involves segregating 
the voiced region from the silence/unvoiced portion 
of the captured signal, and is necessary in the 
development of a reliable speech or speaker 
recognition system. This is because most of the 
speech or speaker specific attributes are present in 
the voiced part of the speech signals. Moreover, 
extraction of the voiced part of the speech signal by 
marking or removing the silence and unvoiced 
region leads to substantial reduction in 
computational complexity at later stages. 
 
 
3.1 Noise Removal 
Noises are unnecessary signals which tend to 
degrade the performance of the speaker 
identification system. Noise removal is done by 

wavelet decomposition technique [13]. The steps 
followed in denoising are: 
i) Compute Discrete Wavelet Transform (DWT) 

decomposition by choosing a   wavelet at a 
decomposition level N. 

ii) For each level 1 to N, select a threshold value 
and apply soft thresholding to both 
approximation and detailed coefficients. 

iii) Wavelet reconstruction is computed based on 
the threshold approximation and detailed 
coefficients. 

   The wavelet decomposition is performed by 
choosing Daubechies wavelet of order 4 from the 
family of orthogonal wavelet. Decomposition is 
performed at level 1. In this both approximation and 
detailed coefficients are denoised using soft 
thresholding and the denoised signal is used for 
reconstruction. 
 
 
3.2 Framing 
The speech region has to be short enough so that it 
can reasonably be assumed to be stationary, for 
extracting the parameters. Thus to model dynamic 
parameters, the signal is divided into successive 
frames. Overlapping between frames is necessary. If 
the frames have no overlap, there may be loss of 
information, due to the presence of a small gap 
between adjacent frames.  Framing is done with a 
frame size of 256 samples and overlap size of 156 
samples. Good results are achieved with overlap 
size more than 50%. Typical value chosen for frame 
overlapping is 60%. Then Hamming windowing is 
done on each frame. 
 
 
3.3 Windowing 
Windowing is done to provide spectral smoothing 
[25]. It is done on each individual frame so as to 
taper the signal to zero at the beginning and at the 
end of frame. Windowing is also essential for 
capturing dynamic characteristics of vocal tract 
system in speech production mechanism [31]. The 
Hamming window is used because it has a wide 
main lobe and small side lobes, making it a smooth 
lowpass filter with less leakage [30].  
Hamming window )(nw has the form         

10
1

2cos46.054.0)( −≤≤







−
−= Nn

N
nnw π                     (1) 

 
where N represents the width, in samples, of a 
discrete-time window function. Typically it is an 
integer power-of-2, such as 210 = 1024. 
n is an integer, with values 0 ≤ n ≤ N-1.  
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4 Feature Extraction 
In feature extraction, to the windowed signal 

2FFT  is calculated [25] and preemphasis is done 
with a preemphasis factor of 0.97. Next the Mel-
scale filter bank is constructed using Gaussian filters 
and filter response is obtained. In speech processing, 
MFCC is a representation of the short term power 
spectrum of a speech sound, based on a linear cosine 
transform of a log power spectrum on a nonlinear 
Mel scale of frequency. This obtained by taking 
discrete cosine transform to the log energies. 20 
MFCC coefficients are obtained from each frame.  
 
 
4.1 Fast Fourier Transform 
Features are the representative pattern vectors for 
speech signals. After windowing the speech signal 
Fast Fourier Transform (FFT) is applied to each 
frame and its squared magnitude is calculated. For 
sampled vector data Fourier analysis is performed 
using Discrete Fourier Transform (DFT). FFT is an 
efficient algorithm for computing DFT in the 
sequence. 
 
 
4.2 Pre-emphasis 
The higher frequency component of speech signal is 
generally weak, so high frequency energy may not 
be present to extract features in the upper frequency 
range. In many speech processing applications 
higher frequency components are necessary [3]. 
Preemphasis is used to boost the energy of high 
frequency signals. Thus preemphasis helps to 
equalize the spectral tilt in speech and the signal is 
spectrally flattened. The output of pre-emphasis [22] 

is related to input s(n)   by 

)1()()( −−= nsnsns α

                                      (2) 

 
where α is Preemphasis factor whose value varies 
from 0.9 to 1. 
 
 
 
 
 
 
 
 
 
 

Fig.2.Mel-scale cepstral feature analysis 

4.3 Mel Scale Filter Bank 
Linear frequency scale is not unique for a speaker, 
so Mel frequency scale is used for speaker 
recognition [26], [27]. Mel is the unit of pitch. Mel-
scale is linear below 1 kHz and logarithmic above 1 
kHz [24]. Mel-scale filter bank is shown in Fig.3. 
The filters are equally spaced along Mel-scale 
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700
1log2595)( 10
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 mel(f) corresponding to mapping the actual 
frequency in Hertz to the mel frequency[36].  
 If triangular filters are used in filter bank, the 
correlation between a subband and adjacent subband 
is lost. In this paper Gaussian filters are used. The 
gaussian filters are chosen for many reasons. First, it 
is symmetric and high frequency components are 
involved. Second, gaussian shaped filters provide 
smooth transition from one subband to other 
preserving most of the correlation between them. 
The filters in the filter bank are arranged such that 
more number of filters are present in the low 
frequency range.  
 

 
Fig.3. Mel scale Gaussian filter bank 

 
The filter response is given by 
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 fs is sampling rate which is chosen as 16 kHz    
 Q is the number of filters required to span the 
frequency range of speech.  
 Standard Deviation in (4) is given by     

α
σ ii

i
kbkb −

= +1                                               (6) 

where ikb are the boundary points of the filters and  
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K is the coefficient index in the N point DFT. 
The term α in (6) controls variance. The value of α 
may be 1, 2 or 3. 
The value of   α is chosen to be 2, since it provides 
better correlation with adjacent subband. 
flow and fhigh are the low and high frequency 
boundaries of filter bank, they are given as      

,5.62 Hz
N
fsf low ==    

kHzfsfhigh 8
2
==

                                 (7) 
The magnitude spectrum is scaled in both frequency 
and magnitude. First the frequency is scaled 
logarithmically using the so called mel-scale filter 
bank H (k,m) and then logarithm is taken. 
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The value of m ranges from 1 to Q, where Q is the 
number of filters. 
 
 
4.4 Discrete Cosine Transform 
Discrete Cosine Transform (DCT) is applied to the 
log of the Mel Spectral Coefficients to obtain 
MFCCs. By applying DCT decorrelated coefficients 
are obtained. The zeroth coeffient has average log 
energy and hence it is discarded. In MFCC the 
frequency bands are logarithmically spaced. As the 
frequency bands are positioned logarithmically in 
MFCC it approximates the human response system 
more closely than any other system. These 
coefficients allow better processing of data. The Mel 
frequency cepstral coefficient is given by  
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c(l) is the lth  Mel Frequency Cepstral 
Coefficient 
where l = 1,2….Q , Q is number of filters. 
 
 
4.5 Dynamic MFCC Using Pitch Frequency 
The pitch frequency precisely represents the 
speakers’ periodic characteristic of the vocal cords’ 
vibration when speakers pronounce voiced sound 
[35]. The pitch information has been used in fields 
such as speech synthesis, and pronunciation defect 
correction, vocoder etc.  It is also a main 
characteristic parameter in the speaker recognition, 
because it best exhibits the vocal cord 
characteristics of the speaker.  

In the traditional algorithm based on MFCC [33], 
the number of Triangle or Gaussian filters, which 
constitute Mel filter, and the center frequency of 
each filter are fixed. This method does not fully 
consider the vocal cord characteristics of the 
speakers. Because the pitch frequency [34] 
represents the periodicity generated by vocal cords 
vibration when the speaker delivers a voiced sound, 
and portrays the vocal characteristics of different 
people, this paper combines MFCC and pitch 
frequency, and proposes design method of dynamic 
Mel filter based on speech signal variety. The steps 
involved in the design of dynamic Mel filter bank 
are given as follows: 
  
(i) Get pitch freq pf  of each frame signal using 

autocorrelation method, then calculate 
 







 += 7001log2595)( 10

pffMel
         (10)

 

This mel(f) maps pitch frequency to mel frequency
.
 

 
(ii) Dividing Mel frequency field into N sub-fields, 

and taking the corresponding frequency 
NPpp fff ,....., 2  of each division point in 

actual frequency field as filter's center 
frequency, designs the Mel filter Bank 
{ }NikHi ,.....2,1),( = . 

 
 
 
 
 
 
 
 
 
 

 
Fig.4. DMFCC feature extraction 

 
     This filter bank is applied on the short-time 
signal’s energy spectrum of the speech signal 
followed by DCT computation to arrive at DMFCC 
features which is shown in Fig.4. 
 
 
5 Gaussian Mixture Model 
GMM can smoothly approximate the probability 
density function of arbitrary shape, portray 
distributed characteristic of different speaker’s 
speech feature in the feature space. The GMM 
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probability density function may be expressed by 
the parameter set 

Mip iiii ,.......1},,{ =∑=




µλ which is called 
parameter model of the speaker yi for example. This 
parameter model is dissimilar for different speakers. 
For each speaker, this model can describe the 
distribution of speech characteristics in the feature 
space. GMM belongs to the unsupervised classifiers 
category. This means that the training samples of a 
classifier are not labeled to show their category 
membership and the targets are not provided 
instead, during the training of the GMM classifier 
the underlying probability density functions of the 
observations are estimated. In the GMM classifier, 
the conditional-pdf of the observation vector with 
respect to the different classes is modeled as a linear 
combination of multivariate Gaussian pdf’s. GMM 
has been successfully applied to speaker modeling 
in text-independent speaker identification because, 
the individual component Gaussian in a GMM 
represents some broad acoustic classes and a 
Gaussian mixture density provides a smooth 
approximation to the sample distribution of 
observations obtained from utterances of a given 
speaker. 
    Speech production is not deterministic. A 
particular sound is not produced by a speaker with 
exactly the same vocal tract shape, glottal flow, due 
to context, coarticulation, anatomical and fluid 
dynamical variations. One way to represent this 
variability is probabilistically through multi-
dimensional Gaussian probability density function 
[28]. The use of GMMs for speaker recognition is 
described in [21]. A Gaussian probability density 
function is state dependent. A different Gaussian pdf 
is assigned for each acoustic class. The Gaussian 
probability density function of a feature vector for ith 

state is given by  
 

)}()'(
2
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−Σ−−
Σ
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             (11) 
where μi=mean vector,  
∑i=covariance matrix and 
D=dimension of the vector. 
    The probability of feature vector in any one of M  
acoustic class for a particular speaker model λ is 
represented by the union or mixture of different 
Gaussian pdf. This is represented as 
 )()/(

1

xbpxp i

M

i
i
 ∑

=

=λ                                   (12) 

where                 is a D-dimensional random vector,  
,  i=1……M are the component densities and  

 pi , i=1……M are the mixture weights. 

      The complete Gaussian mixture density is 
parameterized by the mean vectors, covariance 
matrices and mixture weights from all component 
densities. The parameters are collectively 
represented by the notation    

Mip iiii ,.......1},,{ =∑=




µλ                      (13)  
For speaker identification, each speaker is 
represented by a GMM and is referred by his/her 
model λ. 
   
              
5.1 Maximum Likelihood Parameter 
Estimation 
The aim of ML estimation is to find the model 
parameters which maximize the likelihood of 
GMM. 
For a sequence of T training vectors           

the GMM likelihood can be 
written as 

   
                                     (14) 

 
This expression is a nonlinear function of the 
parameters λ and so direct maximization is not 
possible. The ML parameter estimate is obtained 
iteratively using Expectation Maximization 
algorithm. 
 
 
5.2 Expectation Maximization Algorithm 
The most popular algorithm for GMM parameters 
estimation is the EM algorithm. This algorithm 
allows iterative optimization of the mixture 
parameters, under nondecreasing likelihood 
requirement. The EM algorithm begins with an 
initial model λ, to estimate a new model λ1 .The new 
model then becomes the initial model and the 
process is repeated till convergence. The 
performance of this algorithm depends on its 
initialization due to its tendency to converge to local 
extrema. A proper initialization must be done for 
model parameter. On each EM iteration mixture 
weight, mean and variance are calculated using eqn. 
(15), (16) and (17) respectively. 
 

Mixture weight:                                                  (15) 

 

 

Mean:                                                                (16)  
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Variance:                                                          (17) 

 

The a posteriori probability for acoustic class i is 
given by 

                                                                        (18) 

 

 
5.3 Speaker Identification 
For speaker identification, a group of S speakers 

},.........2,1{ SS = is represented by GMM’s λ1, λ2, 
…….., λS. The objective is to find the speaker model 
which has the maximum a posteriori probability for 
a given observation.  

         )/(maxargˆ
1

XPS krSk
λ

≤≤
=                           (19)  

With reference to Baye’s rule, the speaker 
identification system computes  

                                                                            (20) 
 
 
 In which                        is given in eqn. (12) 
 
 
6 Experimental Results and 
Discussion 
The Speaker Identification experiment is conducted 
on speech database created with a collection of 120 
speakers. From each speaker 5 sessions, each of 20 
sec duration is recorded in 16 kHz sampling rate. 
The speech is recorded using Gold Wave software 
in Tamil and English languages. The initial setting 
in this software is set to 16 kHz, 16 bit mono, then it 
is placed in recording mode and the speaker speaks 
using a condenser microphone. The recorded speech 
is saved with an extension of .wav file format.  
     Feature vectors are obtained for MFCC feature, 
DMFCC feature and combined MFCC and DMFCC 
feature. For every frame of the speech signal 20 
DCT coefficients are obtained and the first DCT 
coefficient is discarded (since it yields the DC 
value). As a result every frame of the speech signal 
contributes 19 MFCC coefficients.  When pitch 
frequency is used in Mel filter scale, every frame of 
the speech signal contributes 19 DMFCC 
coefficients. For the combined feature the 19 MFCC 

coefficients of every frame of speech signal is added 
with 19 DMFCC coefficients of every frame of 
speech signal. This addition of feature vectors result 
in combined MFCC and DMFCC feature. The 
feature vectors obtained are trained using EM 
algorithm in GMM modeling. The first three 
sessions of each speaker are taken for training and 
the remaining two sessions are taken for testing. The 
voice in English/Tamil of test speaker is compared 
to speakers in the trained data set and the number of 
incorrectly identified session trials is tabulated in 
Table 1. The Identification Error Rate is given by 
 

%100×=
trialstionidentificaofNumber

trialstionidentificaincorrectofNumberIDER  

 
 Table 1. Speaker Identification Performance 

Using 1 sec Speech Utterance 

 
The speaker identification performance is evaluated 
for two different lengths of speech utterances. In 
first case 1second speech is used.  From Table 1, it 
is inferred that lesser identification error rate is 
achieved for 8 mixture components of GMM for all 
the three features.  

 
Fig.5. Identification Performance for 1 sec speech 

utterance 
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4 60.2 
8 50.4 

16 80.2 
32 85 
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4 50.1 
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Fig.5 shows the Identification Performance for 1 sec 
speech utterance for MFCC feature, DMFCC 
feature and combined MFCC and DMFCC features.  

Table 2. Speaker Identification Performance Using 
Segments of Different Lengths 

 
For 16 and 32 Gaussian mixture components the 
identification error rate increases beyond the 
identification error rate for 4 Gaussian mixture 
components.  
In the second case varying lengths of speech 
utterances is used. Comparing  speaker 
identification performance of 1 second speech 
utterance in Table 1, and 3 seconds, 7 seconds, 10 
seconds and 20 seconds speech utterances shown in 
Table 2 ,  it is observed that 1 second of speech 
utterance is not enough to obtain high identification 
performance, whereas for 20 second speech 
utterances, the identification performance increases 
for all the three features.   It is also observed that 
there is a leveling off from 16 mixture components. 
This indicates that there is a lower limit on the 
number of mixture components necessary to 
adequately model the speakers. Models must 
contain at least this minimum number of 
components to maintain good identification 
performance. This limit seems to be 8 mixture 
components to this speaker identification. Fig.6 
shows the increasing identification performance 
from 3 seconds to 20 seconds length segments for 
MFCC, DMFCC and combined features. The 

combined MFCC + DMFCC feature produces very 
low identification error rate compared to individual 
features. 
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
Fig.6. Identification performance by (a) MFCC (b) 

DMFCC and (c) MFCC + DMFCC for 
different length of speech signals 

 
The performance of the proposed combined MFCC, 
DMFCC feature based Speaker identification 
system is compared with the work on ‘features 
based on Cepstrum and Fourier – Bessel (FB) 

Features 

Number    
of 

mixture 
Compon

ents  

IDER 
(in %) 

Test signal length 

3sec 7 sec 10sec 20sec 

MFCC 

4 50 39 28.4 18 

8 40 27.3 17.2 5.8 

16 69 44.5 26 12.6 

32 75 56 42 27.5 

DMFCC 

4 40 35.2 20 13 

8 25.6 21.4 12.5 2.9 

16 54.2 39.2 22 8 

32 60.5 45 31 20.8 

MFCC 
+ 

DMFCC 

4 35 31.13 13.75 8 

8 21.7 18.75 7.66 1.2 

16 37.27 30 15 2.5 

32 47.16 33.13 25.94 17.5 
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Expansion’ by K.Gopalan and the work on ‘Speech 
Signal Image classification method for speaker 
identification’ by Khalid Saeed. Gopalan used 
Greenflag database with 41 speakers and NATO 
database with 9 speakers, for the former he got 
maximum identification accuracy of 80.4% and for 
the later 88.0%. Khalid used 20 spaekers and 
obtained overall average success rate of 94.82%. 
Our combined MFCC and DMFCC based GMM 
model out performs these two works with 98.8% of 
identification accuracy(ie 1.2% IDER) for 120 
speakers. 
 
7 Conclusion 
This paper uses MFCC feature, pitch based DMFCC 
feature and the combination of these two features in  
the experimental evaluation of text-independent, 
multilingual speaker identification performance. 
The performance of the speaker identification 
system is evaluated with microphone speech data 
base with 120 speakers. The experiments examined 
the speaker Identification Error Rate by testing 
using segments of different lengths and also using 
text-independent utterances in Tamil and English 
languages. In comparison with the identification 
error rate of 5.8% obtained with MFCC-based 
system and 2.9% with DMFCC system an error rate 
of 1.2% is obtained when DMFCC feature vectors 
are added with MFCC feature vectors to form the 
combined feature. This shows that combining the 
features modeled on the human vocal tract and 
auditory system yields better result than individual 
component model. 
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